Penalized classification using Fisher's linear discriminant.
نویسندگان
چکیده
We consider the supervised classification setting, in which the data consist of p features measured on n observations, each of which belongs to one of K classes. Linear discriminant analysis (LDA) is a classical method for this problem. However, in the high-dimensional setting where p ≫ n, LDA is not appropriate for two reasons. First, the standard estimate for the within-class covariance matrix is singular, and so the usual discriminant rule cannot be applied. Second, when p is large, it is difficult to interpret the classification rule obtained from LDA, since it involves all p features. We propose penalized LDA, a general approach for penalizing the discriminant vectors in Fisher's discriminant problem in a way that leads to greater interpretability. The discriminant problem is not convex, so we use a minorization-maximization approach in order to efficiently optimize it when convex penalties are applied to the discriminant vectors. In particular, we consider the use of L(1) and fused lasso penalties. Our proposal is equivalent to recasting Fisher's discriminant problem as a biconvex problem. We evaluate the performances of the resulting methods on a simulation study, and on three gene expression data sets. We also survey past methods for extending LDA to the high-dimensional setting, and explore their relationships with our proposal.
منابع مشابه
Financial crisis and exchange market pressure In energy exporting countries: Fisher's discriminant function approach
Financial crises are unpredictable and threatening the economic stability of countries. Hence, policymakers are forced to adopt appropriate tactics to defuse and resolve crises. One of the indicators that helps policymakers and economists is the exchange market pressure. The purpose of this study is to examine the factors affecting the foreign exchange market pressure during 2008- 2009 financia...
متن کاملClassification of Bladder Cancer Patients via Penalized Linear Discriminant Analysis
Objectives: In order to identify genes with the greatest contribution to bladder cancer, we proposed a sparse model making the best discrimination from other patients. Methods: In a cross-sectional study, 22 genes with a key role in most cancers were considered in 21 bladder cancer patients and 14 participants of the same age (± 3 years) without bladder cancer in Shiraz city, Southern Iran. Rea...
متن کاملPenalized discriminant analysis of in situ hyperspectral data for conifer species recognition
Using in situ hyperspectral measurements collected in the Sierra Nevada Mountains in California, we discriminate six species of conifer trees using a recent, nonparametric statistics technique known as penalized discriminant analysis (PDA). A classification accuracy of 76% is obtained. Our emphasis is on providing an intuitive, geometric description of PDA that makes the advantages of penalizat...
متن کاملKullback-Leibler Penalized Sparse Discriminant Analysis for Event-Related Potential Classification
A brain computer interface (BCI) is a system which provides direct communication between the mind of a person and the outside world by using only brain activity (EEG). The event-related potential (ERP)-based BCI problem consists of a binary pattern recognition. Linear discriminant analysis (LDA) is widely used to solve this type of classification problems, but it fails when the number of featur...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Statistical Society. Series B, Statistical methodology
دوره 73 5 شماره
صفحات -
تاریخ انتشار 2011